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Complex signals, involving multiple components within and across modal-

ities, are common in animal communication. However, decomposing

complex signals into traits and their interactions remains a fundamental

challenge for studies of phenotype evolution. We apply a novel phenotype

network approach for studying complex signal evolution in the North

American barn swallow (Hirundo rustica erythrogaster). We integrate model

testing with correlation-based phenotype networks to infer the contributions

of female mate choice and male–male competition to the evolution of barn

swallow communication. Overall, the best predictors of mate choice were

distinct from those for competition, while moderate functional overlap

suggests males and females use some of the same traits to assess potential

mates and rivals. We interpret model results in the context of a network

of traits, and suggest this approach allows researchers a more nuanced

view of trait clustering patterns that informs new hypotheses about the

evolution of communication systems.
1. Introduction
Sexual selection has led to the evolution of a seemingly boundless variety of traits

used to assess potential mates and competitors. Striking elaborations in visual,

acoustic and chemical signals have intrigued biologists for over a century, leading

to hundreds of studies on the function of these signals in communication [1].

Increasingly, it has become clear that animal signals are often complex, incorpor-

ating multiple traits across one or more modalities (e.g. visual or acoustic cues)

[2–4]. Moreover, recent theory suggests that multicomponent signals are often

favoured over simple signals [5]. For example, complex signals may arise if redun-

dant signals act as ‘backups’ to ensure signal transmission to intended receivers.

Alternatively, non-redundancy of signals would be favoured if ‘multiple mess-

ages’ are more informative in terms of localizing conspecifics and reinforcing

honesty [6,7]. Multicomponent signals may also be beneficial when there are

multiple audiences [8]. Because many signals, including birdsong, have dual

functions in competition and mating [9], determining which signal components

mediate intra- versus intersexual communication is key for understanding the

evolutionary processes shaping complex signals.

The complexity of multicomponent signalling systems poses significant logis-

tical hurdles. The classic approach for parsing this complexity has focused on

isolating modalities (e.g. observing responses to acoustic signals in the dark),

allowing researchers to test for various types of interactions (e.g. dominance,

additive or synergistic effects) across modalities [3,10,11]. Similarly, manipulation

(rather than isolation) of different signal components within a single modality

(e.g. [12]) or across multiple modalities (e.g. [13–15]) can further elucidate signal

interactions. However, the sheer number of treatments necessary to assess trait

interactions through serial manipulations increases rapidly, even with relatively

simple signals [16,17].
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Figure 1. A conceptual diagram showing trait correlations for different pat-
terns of signal redundancy and modularity. Shapes (nodes) represent four
different traits in two different modalities (e.g. squares represent morphologi-
cal features, while circles represent song components). Lines (edges) signify
correlations between traits. In (a,b), many traits are correlated (high redun-
dancy), while in (c,d ), few traits are correlated (low redundancy). In (a,c),
trait correlations occur regardless of modality and are not organized into
modules (low modularity), while in (b,d ), trait correlations are clustered
into modules (high modularity).
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In this study, we propose a network-based approach as a

complementary tool for understanding biologically relevant

signal complexity. We can represent the architecture of com-

plex signal traits as signal phenotype networks, in which

putative signalling traits are represented as nodes, and edges

(links between nodes) indicate strengths of marginal (i.e. not

partial) correlations between traits. Recent theory suggests

that the correlational structure of complex traits could reflect

the evolutionary dynamics that shape phenotypes [18,19].

Network approaches provide the opportunity to apply math-

ematical tools developed in complex systems research to

quantitatively assess signalling architecture and test hypo-

theses about the evolution of communication systems. In

combination with dimensionality reduction and model selec-

tion procedures to help circumvent issues of statistical power

related to correlational analyses of multiple traits, pheno-

type networks can illuminate both the structure and putative

function of multicomponent signals and thus represent an

important step forward in disentangling the tremendous com-

plexity of animal communication systems. We suggest that

combining system-level associational analyses with manipula-

tive experiments offers a way to investigate common structural

and functional attributes of animal communication systems.

Here, we use multimodal phenotypic data from the North

American barn swallow (Hirundo rustica erythrogaster), includ-

ing morphological, plumage colour and song features, to assess

trait redundancy, modularity and function. Specifically, we

compare the correlation structure of traits that predict paternity

and nearest competitor distance to learn how inter- and intra-

sexual selection influence complex signal architecture. We do

this by introducing and applying a novel workflow to test

hypotheses about the evolution of complex signal phenotypes:

(i) identifying clusters of correlated traits using principal com-

ponents analysis (PCA), (ii) performing model selection to

determine which trait clusters are important predictors of

reproductive performance and competitive environment, (iii)

developing a phenotype network based on trait correlations

to represent the potential for signal redundancy and (iv) inte-

grating model selection results with the phenotype network

to assess modularity and function of putative signals across

sexual signalling contexts.
(a) Characterizing phenotype networks
Studies of multicomponent signals have thus far focused on

testing alternative hypotheses based on signal information

content and efficacy (e.g. increased detection) [3], or whether

signals function as ‘backups’ or ‘multiple messages’ [10] at

the scale of pairs or suites of traits. The phenotype network

approach leverages these existing conceptual frameworks

and provides a workflow to describe the signal system as a

whole and quantify the degree to which different sets of traits

play different roles. The architecture of phenotype networks

can be described along two axes: redundancy and modularity
(figure 1). Here, we interpret correlated traits as being

structurally redundant (in a network sense), potentially signal-

ling the same information (about quality, condition or

motivation) to receivers. This concept is distinct from functional
redundancy, wherein two traits elicit the same receiver

responses [10]. Structural redundancy can be measured as the

density of the phenotype network—i.e. the proportion of

pairs of nodes that are significantly correlated.
Modularity is a general term that refers to the degree to which

connections occur within versus across clusters. Thus, the assess-

ment of modularity depends on how one defines modules. From

a network perspective, modules are often defined as tightly

linked clusters of nodes that are sparsely interconnected [20].

While many approaches exist to detect such clusters (often

termed ‘community detection’; reviewed in [21]), these statistical

definitions of modules do not lend themselves naturally to bio-

logical interpretation. Alternatively, we can define modules a
priori as nodes of the same trait type—e.g. acoustic, colour or

morphological traits—and measure modularity as the relative

strength of connections within versus across node types. This

approach lends itself much more readily for hypothesis testing,

and ultimately, comparative analyses across systems.

Empirical studies of the architecture of signal systems

will help integrate ongoing behavioural research with the emer-

ging theory on the evolution of complex phenotypes. For

example, theory suggests that distributing informational units

across multiple weakly correlated clusters, each composed of

tightly intercorrelated traits, maximizes information content

for receivers ([18]; figure 1b). Recent work also suggests that

directional selection operating independently on different trait

clusters would promote modularity in complex phenotypes

[19]. The same study also suggests that a pattern in which one

trait complex is under directional selection while another is

under stabilizing selection, would lead to intermediate levels

of modularity. Thus, there is emerging theory that predicts

intermediate levels of modularity—trait clusters connected by

weak correlations—from the perspectives of signal design and

sexual selection. These theoretical models do not necessarily

make realistic assumptions about animal communication in

nature, and empirical studies seldom assess complex signal

architecture directly. Thus, there is currently a large gap in

our knowledge about how ecology and social evolution shape

signalling systems as a whole. Our goal is to offer a new

http://rspb.royalsocietypublishing.org/
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analytical approach to help bridge this gap between theory and

empirical studies of signal design across multiple modalities.
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2. Material and methods
(a) Study system
The barn swallow, Hirundo rustica, is a Holarctic-distributed

migratory oscine songbird, comprising six described subspecies.

Within some populations of barn swallows, the length of streamers

(the outermost tail feathers) plays a key role in mate choice [22–24].

However, studies in North America suggest dark melanin-based

plumage colour is more important in mate choice among

H. r. erythrogaster [25–27], although this is less clear for a Canadian

population [23,28]. We studied populations of H. r. erythrogaster
between 2009 and 2012 in Boulder County, CO, USA (latitude

40829036000 N, longitude 1058169039000 W). Ten breeding locations

were monitored, ranging from 3 to 43 nesting pairs.

(b) Field methods
Each year, barn swallows were captured at the start of breeding

using mist nets, banded with USGS metal bands, and given a

unique combination of a colour band and non-toxic permanent

ink pen applied to white spots on tail feathers. Contour feather

samples were taken from four areas along a ventral transect for

standardized colour analysis (see below). During the entire breed-

ing season, we conducted behavioural observations to match

banded individuals to nests and thus identify social pair mates.

We then monitored reproductive success for all active nests at

study sites. Blood samples were taken from adults upon capture

and from nestlings on day 12 post-hatching for paternity analyses.

(c) Phenotypic measurements
Our choice of phenotypic measures (table 1) was based on previous

work within this species. We measured two morphological

features: right-wing length, and maximum length of streamers

(the outermost tail feathers), as these are potential indicators of

age [22,28,29]. Additionally, we measured feather colour for

samples collected from four ventral patches (throat, breast, belly,

vent), following Safran et al. [30]. For each patch, we used a spec-

trometer to measure average brightness, hue and red chroma (see

the electronic supplementary material, appendix S1 for details).

We also recorded between 3 and 20 songs (10.67+0.67 s.e.) from

66 males between 5.00 and 13.00 during May–August, 2009, 2011

and 2012. We included only complete songs in our analysis,

which comprised a warbling series of syllables not separated by

more than 0.2 s and terminated in a harsh trill (the rattle). We

extracted 14 measures of song frequency and temporal character-

istics, repertoire size and composition (table 1) based on previous

work and hypothesized roles in social interactions [31–33]. Based

on our preliminary analyses (electronic supplementary material,

figure S2), we averaged song parameters across at least five songs

from each male. Our final dataset consisted of 50 males with

complete morphological, colour and song data.

(d) Paternity analyses
Because extra-pair copulation is common in barn swallows [22], we

assigned paternity to offspring in each focal male’s nest using six

polymorphic microsatellite markers. We analysed allele frequen-

cies and performed paternity exclusions using CERVUS v. 3.0

[34]. None of the six loci differed from Hardy–Weinberg equili-

brium. The probability of correctly excluding a focal male as the

genetic father was 0.9891, and given a known mother was

0.9991. The mean rate of extra-pair young per nest was 23.3%, com-

parable to rates found in other barn swallow populations (range:
17.8–34%) [25,35]. For additional colour, song and paternity

methods, see the electronic supplementary material appendix S1.

(e) Measures of inter- and intrasexual selection
A primary goal was to determine whether different components of

the communication system play different roles across signalling

contexts, such as mate preferences and intrasexual competition.

We used paternity, defined as the proportion of genetically deter-

mined within-pair offspring sampled within a male’s nest on

day 12 post-hatching, as our measure of female choice because pre-

vious work has shown that females dynamically allocate paternity

as a function of changes in phenotype [27].

We used the linear distance to the nearest active nest (hereafter

inter-nest distance) as a measure of intrasexual competition.

We defined inter-nest distance as the log-transformed linear dis-

tance in centimetres between the focal male’s nest and the nearest

active nest with a fertile female (and her mate) at the site and day

of song recording. Male barn swallows are highly territorial,

defending nesting areas within larger breeding sites. Previous

work indicates that barn swallows maximize distance between

each other [36], preferring nests hidden from neighbours [37]. More-

over, males with more active neighbours had shorter songs which

emphasized the rattle, and the length of rattles correlated with

circulating testosterone concentrations [31]. These results indicate

that nearest neighbour distance is a proxy of intrasexual compe-

tition. In our competition analysis, we excluded males whose

nearest neighbour was more than 12 m away, as this was a natural

break point in the bimodal distribution of neighbour distances

(electronic supplementary material, figure S4). Our sample size

for male seasonal paternity was 28 and 38 for inter-nest distance.

( f ) Exploring function(s) of signal traits
We performed PCA on the 28 phenotypic variables (descriptions:

table 1), extracting nine components with eigenvalues greater

than one. Extracted components were rotated using the varimax

method to maximize differences between orthogonal vectors

and facilitate interpretation of these phenotypic axes. Rotated fac-

tors were then renamed according to trait loadings (electronic

supplementary material, table S1).

We used an information-theoretic approach to determine

which signal axes best explained variation in fitness metrics and

competitive environment [38,39], as it offers greater power for

ranking alternative models and avoids the problem of multiple

testing associated with traditional step-wise model selection

[39,40]. For each response variable, we specified a global model

including all nine phenotypic factors, with site nested in year as

random effects. The candidate model set for both analyses

included every combination of fixed effects, including a minimal

model containing only the random effects and a global intercept

term, for a total of 512 models for both response variables. This

approach was necessary because we had no a priori expectations

about which combination of traits explained each response [41],

and further justified in that each covariate was identified as a

biologically relevant phenotypic axis reflecting different aspects

of male quality.

We used model averaging to calculate effect estimates and

95% CIs from models within 2 DAICc of the best model. General

and generalized linear mixed models (LMM and GLMM, respect-

ively) were specified using the ‘lme4’ package [42] and model

averaging was conducted using the ‘MuMIn’ package [43]

implemented in R v. 3.1.0 [44]. Models were specified as follows:

analysis of paternity was a binomial GLMM with the number of

trials equal to the number of fledglings in a nest, and inter-nest

distance was analysed using a lognormal LMM.

We report model-averaged parameter estimates and 95% CIs

for all factors included in our top model set. Because we have

adopted an information-theoretic approach for inference, we

http://rspb.royalsocietypublishing.org/


Table 1. Measured phenotypic traits included in principal components analysis.

module subcat trait description mean (s.e.)

song traits

time domain

WL warble length—time between peak of first syllable and peak of last syllable before P (sec) 3.08 (0.10)

PL P-syllable length—time from beginning to end of P-syllable (sec) 0.31 (0.00)

RL rattle length—time between the first and last pulses in the terminal trill (sec) 0.33 (0.01)

RTmp rattle tempo—number of rattle pulses/rattle length (Hz) 31.27 (0.25)

WTmp warble tempo—number of syllables before P/warble length (Hz) 4.56 (0.06)

frequency domain

PF W peak frequency of the warble—frequency at the maximum amplitude in the warble (Hz) 3960.38 (52.07)

PF P peak frequency of the P-syllable—frequency at the maximum amplitude in the P-syllable (Hz) 4279.26 (71.12)

PF R peak frequency of the rattle—frequency at the maximum amplitude in the central rattle,

disregarding the first and last pulse, which have lower frequencies than the primary pulse

train in our population (Hz)

5421.30 (93.05)

FB R frequency bandwidth of the central rattle—song frequency bandwidth above a 210 dB

threshold, relative to peak frequency, averaged across the primary pulse train (Hz)

2694.63 (98.19)

WE W Wiener entropy of the warble—ratio of the geometric mean to the arithmetic mean of the

warble spectrum (0 ¼ pure tone; 1 ¼ random noise)

0.62 (0.01)

repertoire

%A % A-syllables—(a measure of low song complexity) number of A-syllables/total number of

syllables; these syllables are simple, resembling contact calls

29.50% (0.01)

%S % S-syllables—(a measure of intermediate song complexity) number of S-syllables/total

number of syllables; these syllables are ‘scratchy’ and atonal

9.01% (0.01)

%T % T-syllables—(a measure of high song complexity) number of T-syllables/total number of

syllables; these syllables are complex, highly frequency modulated, and tonal

3.38% (0.003)

Rep repertoire size—cumulative number of unique syllables sampled for a given male 27.53 (0.67)

morphological traits

RWL right-wing length (mm) 118.48 (0.38)

TS tail streamer length—maximum length of the outermost tail feathers (mm) 91.31 (1.03)

colour traitsa

TBri

RBri

BBri

VBri

average brightness—the average per cent reflectance between 300 and 700 nm; lower values

darker

T: 17.96 (0.82)

R: 28.89 (0.91)

B: 28.35 (0.98)

V: 21.47 (0.63)

THue

RHue

BHue

VHue

hue—the wavelength at maximum slope; low values pale/yellowish, high values dark/reddish

(nm)

T: 653.38 (3.33)

R: 631.03 (3.17)

B: 626.18 (4.11)

V: 646.12 (3.38)

TChr

RChr

BChr

VChr

red chroma—the proportion of light reflected in the red colour range (600 – 700 nm); higher

values darker

T: 0.5044 (0.01)

R: 0.4550 (0.01)

B: 0.4490 (0.01)

V: 0.4978 (0.01)
aEach colour axis measured for T, throat; R, breast; B, belly; V, vent.
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emphasize that these should not be interpreted through a null

hypothesis-testing perspective [39,45]. We further assess model

fit by calculating marginal and conditional R2-values (R2
m and

R2
c ), which represent the variance explained by the fixed effects

and both the fixed and random effects, respectively, for each

well-supported model [46]. Therefore, factors retained in a
top model set were the most important for predicting a given

response variable, with the index of variable importance (hereafter

importance, the sum of AICc weights of the models that included

a factor) acting as a quantitative measure [38]. The inclusion of a

random effects model in each analysis additionally allowed us

to assess whether phenotypic variables contribute explanatory

http://rspb.royalsocietypublishing.org/


Table 2. Variables used in model selection.

predictor variables (rotated principal components of phenotype)

variable higher value indicates

[Ventral Paleness] lighter breast, belly and vent

[Song Tonality] higher pitch, less tonal, narrower frequency bandwidth, with more intermediately complex ‘S’ syllables

[Throat Darkness] darker, redder throat

[Monotony] longer songs, comprised of many simple ‘A’ syllables

[Complexity/Feather Length] greater proportion of complex ‘T’ syllables, and longer wings and tail streamers

[Ventral Redness] redder breast, belly and vent

[Song Tempo] faster warble tempo, with shorter, faster rattles

[Repertoire/Vent Darkness] larger cumulative number of syllables and darker vent

[P-Length] longer P-syllables

response variables (metrics of female choice and male – male competition)

variable description

paternity proportion of genetic offspring in a focal male’s nest; binomial—in logistic regression, number of within-pair

young ¼ wins, number of extra-pair young ¼ losses, n ¼ 28

inter-nest distance distance to the nearest nest with a fertile female at the site and day a male was recorded; females were considered

fertile if the day of recording was within the range of 7 days before clutch initiation and the day prior to clutch

completion; Gaussian after log transformation, n ¼ 38

rspb.royalsocietypublishing.org
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power after accounting for effects due to differences across breed-

ing sites and the particular year in which data collection took place.
(g) Phenotype network architecture
We generated a phenotype network using all 28 features of pheno-

type that we measured for individuals in our population. Each

edge of this network represents Spearman’s r correlations. In

order to minimize the interpretation of incidental correlations,

we discarded any trait-pair correlation if its 95% CI for 100 000

bootstrap permutations overlapped zero. We visualized the pheno-

type network using the R package ‘qgraph’ [47]. For an annotated

script describing our network analyses and visualizations, see the

electronic supplementary material, appendix S2.

We used two metrics to assess overall levels of redundancy: aver-

age correlation strength and network density. Average correlation

strength was calculated as the mean of the absolute value of the

unsigned phenotypic correlation matrix. Network density was

calculated as: no. robust edges (correlations with nonzero boot-

strapped 95% CIs)/total no. pairwise correlations. To test whether

the network of traits predicting paternity and inter-nest distance

had different degrees of redundancy from the network as a whole,

we randomly selected (without replacement) an equivalent

number of nodes for each network (n ¼ 20 for paternity; n ¼ 14 for

inter-nest distance). By iterating this procedure 1000 times, we

generated distributions for each redundancy metric. From these

distributions, the proportion of observations more extreme than

our empirical value was used as a p-value for assessing significance.

We measured modularity as the degree to which correlations

are structured based on trait types. The coefficient of assortativity

[48] describes the degree to which edges in a network connect

nodes of similar type. If trait correlations within modules are stron-

ger than correlations across modules, then assortativity should be

greater than the random expectation. Moreover, if traits are weakly

correlated across modalities, then assortativity will be less than

the maximum possible value, 1, which occurs when there are

no connections between modalities. We divided nodes into
three types—morphology, colour and song—and measured the

weighted assortativity coefficient (rd) using the R package ‘assort-

net’ [49]. We compared this value with the expected level of

assortativity in randomized networks generated by permuting

the ‘node type’ across nodes (i.e. node-label permutation, elec-

tronic supplementary material, appendix S1). If traits are tightly

correlated within modalities and weakly connected across modal-

ities, then the coefficient of assortativity would lie between the

random expectation (estimated by permutation) and one.
(h) Integrating structure and function of the signalling
system

We further tested whether patterns of connectivity between mod-

alities differed based on functional contexts. Using the model

selection procedure as described above, we categorized nodes

based on whether they loaded highest on factors important in

predicting paternity and/or inter-nest distance. This allows for

simultaneous visualization of trait architecture, modality and

function in communication.
3. Results
(a) Identifying phenotypic axes
Our PCA of 28 morphological, song and colour traits produced

nine orthogonal factors with eigenvalues greater than 1, explain-

ing 75% of the cumulative variance in phenotypic traits

(electronic supplementary material, appendix S1 and table S1).

These factors included three colour axes ([Ventral Paleness],

[Throat Darkness] and [Ventral Redness]), four song axes ([Song

Tonality], [Monotony], [Song Tempo] and [P-Length]) and two

multimodal axes ([Complexity/Feather Length] and [Reper-

toire/Vent Darkness]). Biological interpretations of factors are

provided in table 2.

http://rspb.royalsocietypublishing.org/
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Figure 2. Model-averaged slope estimates and confidence intervals for traits ranked in the top 2 DAICc for paternity and inter-nest distance. Importance values
(sum of AICc weights of top models including a factor) are shown outside the right margins.
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(b) Assessing trait functions
(i) Traits explaining paternity
The best model for paternity included [Complexity/Feather

Length], [Song Tempo] and [P-Length], with a model weight

of 0.12, indicating low model certainty (see electronic sup-

plementary material, table S2, in appendix S1 for model

results). The top model set retained 11 models, including six fac-

tors: [Complexity/Feather Length], [Song Tempo], [P-Length],

[Ventral Paleness], [Song Tonality] and [Monotony]

(importance ¼ 1.00, 0.85, 0.55, 0.45, 0.20, 0.18, respectively). Over-

all, [Complexity/Feather Length] and [Song Tempo] were the

best predictors of paternity, while there was moderate support

for [P-Length] and [Ventral Paleness]. There was minimal

support for [Song Tonality] and [Monotony].

Thus, males with a greater proportion of complex (‘T’)

syllables, longer streamers and wings, faster, shorter warbles,

p-syllables and rattles, with darker ventral plumage had

higher paternity in their social nests (figure 2a). To a lesser

degree, males with less tonal, lower pitched, songs with

fewer simple (‘A’) syllables had higher genetic paternity.

R2
m for the paternity models ranged from 0.18 to 0.37, and

R2
c ranged from 0.24 to 0.55, suggesting that site and year

differences did not greatly influence cuckoldry rates (see

electronic supplementary material, table S2).
(ii) Traits explaining inter-nest distance
The best model for inter-nest distance contained only

[Repertoire/Vent Darkness], with a model weight of 0.28.

The top model set contained six models, including four

factors: [Repertoire/Vent Darkness], [Song Tempo], [Song

Tonality] and [Ventral Redness] (importance ¼ 0.89, 0.35,

0.28, 0.10, respectively). All top models, except one, contained

[Repertoire/Vent Darkness], and model-averaged estimates

indicated a strong effect (figure 2b), with males having
larger syllable repertoires and darker vents maintaining a

greater distance to nearest neighbour.

Overall, males with greater distance to the nearest active

nest tended to have larger repertoires, darker vents, yellow-

shifted breast hue, slower, lower pitched, more tonal songs,

composed of fewer ‘S-syllables’, with slower, longer rattles cov-

ering a broader frequency bandwidth. Because the random

effects model, which did not contain any phenotypic predictors,

was included in the top model set, R2
m values ranged from 0 to

0.17, and R2
c from 0.28 to 0.55. These higher R2

c ranges, relative to

R2
m highlight the considerable among-site differences.
(c) Structure of the phenotype network
The structure of the phenotype network in figure 3a represents

the overall patterns of correlations between all possible pairs of

measured traits. Our redundancy measures for the full network

were javg corrj ¼ 0.435, network density ¼ 0.196. As shown in

the electronic supplementary material, figure S5, we found

that levels of redundancy for the paternity network did

not differ from the full network (javg corrj ¼ 0.435,

javg corrpermutationj ¼ 0.434, p ¼ 0.489; network density ¼

0.221, network densitypermutation ¼ 0.197, p ¼ 0.228). The same

was also true for the inter-nest distance network (javg corrj ¼
0.389, javg corrpermutationj ¼ 0.432, p¼ 0.872; network density¼

0.198, network densitypermutation¼ 0.199, p¼ 0.512).

The assortativity coefficient for the full network (rd¼

0.669+0.028 jackknife s.e.) was greater than expected under

random assortment (permutation test: p , 0.001; electronic

supplementary material, appendix S1, text and figure S6),

and less than the assortativity value under perfect assortment

(rd¼ 1). There were very similar patterns of significant

assortativity for the paternity network (rd¼ 0.669+0.039,

rd,permutation¼ 20.071, p , 0.001) and inter-nest distance

network (rd¼ 0.805+0.077, rd,permutation¼ 20.095, p¼ 0.003)
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(see the electronic supplementary material, figure S6). Thus,

levels of structural modularity and redundancy were similar

for all three phenotype networks (figure 3). Moreover, based

on significant modularity and some level of redundancy within

modules, the overall network most closely resembles figure 1b.
(d) Integrating trait functions with signal architecture
Figure 3b,c includes only nodes that loaded highest on factors

included in the top models for paternity and inter-nest dis-

tance, respectively. In addition, node colours are graded by

importance (i.e. sum of AICc weights of top models including

a factor on which a trait loaded highest). Thus, because all top
models of paternity included [Feather Length/Complexity],

this factor has an importance value of 1, and its component

traits—Right-Wing Length (RWL), Tail Streamer Length (TS)

and percentage of complex syllables (%T)—are coloured

accordingly in figure 3b.

Combining our model selection results with the phenotype

network provides simultaneous information on signal modality,

potential for redundancy and putative function in communi-

cation. As shown in figure 3b,c, there is some overlap in the

traits predicting the two response variables (9/28 nodes¼

32%). However, the traits explaining the greatest amount of vari-

ation in paternity did not predict variation in inter-nest distance,

and vice versa. The cluster of traits comprising [Song Tempo]

http://rspb.royalsocietypublishing.org/
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show the clearest evidence of dual function across inter- and

intrasexual contexts, as this factor was the second-best predictor

of both paternity and inter-nest distance (figure 2).
.royalsocietypublishing.org
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4. Discussion
Describing the architecture of a signalling system as a pheno-

type network has several advantages. First, we can visualize

and measure how signal systems are organized based on trait

types—e.g. the overall levels of correlations between traits,

and how sets of traits cluster. Moreover, by combining this

network with an analysis of the function(s) of different sets

of traits, we can begin to explore the interplay between the

architecture of signal phenotype networks and the evolution

of animal communication.

The network approach also allows us to assess the level of

modularity of signal systems to test specific hypotheses. For

example, the signal phenotype network of our barn swallows

is characterized by discrete clusters of traits that are partitioned

mostly by trait type: morphological, acoustic and colour traits

are more closely correlated with each other than to other trait

types. This is not surprising, as different trait types are subject

to distinct genetic and developmental constraints that make

them less likely to be correlated. However, our analyses

show that there are also many correlations between node

types. Theoretically, such a pattern may emerge when suites of

traits are functionally correlated, and this generates selection

for genetic correlations, as well [19]. An alternative explanation,

proposed by Ay et al. [18], is that when signallers and receivers

both benefit from enhanced communication, weak correla-

tions among signal modules are favoured. The empirical

measurements of phenotype networks, combined with develop-

ment of theory regarding the evolution of complex trait

architecture, could motivate future experimental work to test

these hypotheses. The phenotype network approach provides

a method by which we can quantify ‘assortment’ by trait type,

or by any other criteria. This measure can be compared across

systems (e.g. species, populations, sexes), potentially opening

the door for new comparative analyses of multicomponent

signal systems.

(a) Comparing functions of traits on phenotype
networks

In the current study, we focused on the potential roles of traits

in mediating social interactions in two different contexts: mate

choice (as measured by paternity) and intrasexual competition

(as measured by inter-nest distance). Our results indicate that

the most important factors predicting paternity and inter-nest

distance were different phenotypic PCs—[Complexity/Feather

Length] and [Repertoire/Vent Darkness], respectively—

comprising unconnected clusters on the phenotype network

(figures 2 and 3). Thus, some traits are structurally correlated

and share the same function and may perhaps be considered

redundant (e.g. the proportion of ‘T’ syllables and streamer/

wing lengths). By contrast, other traits are uncorrelated and

could convey different information, yet share the same func-

tion, suggesting that they could be ‘multiple messages’.

Importantly, a phenotype network perspective clarifies that

both types of signal complexity can occur in the same system.

In addition, the second-most important factor for both

paternity and inter-nest distance was [Song Tempo],
comprising warble tempo, rattle tempo and rattle length,

and this cluster of traits was disconnected from other

higher ranking PCs (figures 2 and 3). This finding suggests

that males and females may use different signals to assess

potential mates and competitors, but use a common set of

orthogonal signals to reinforce information across both con-

texts. Lower ranking factors (and their constituent traits) in

both signalling contexts likely provide a mixture of additional

redundant and non-redundant information, with smaller or

less-consistent effects on receivers. Phenotype networks pro-

vide a formal method to evaluate how signalling to multiple

audiences [8] might shape the architecture of communication

systems as a whole. However, experimental manipulations

are necessary to clarify functional interactions of different

signal clusters to determine whether, for example, ventral

darkness and rattle tempo act as ‘backup signals’ or ‘multiple

messages’ [10] when females choose mates.

The finding that darker males had higher paternity is con-

sistent with several previous studies within this subspecies

[26,27,50]. However, our best measure of female phenotypic

preference was a trait complex involving tail streamer length,

wing length and %T syllables. This result was unexpected,

given previous studies showing no relationship between

tail streamer length and reproductive success in this subspecies

[25,50], and the results of a recent experiment in our study popu-

lation wherein males with artificially elongated streamers lost

paternity in the brood following manipulation [51]. These

mixed results with respect to streamer length may have to do

with the differences in the overall architecture of signal systems.

To better understand the dynamics of female mate choice,

combinations of targeted experiments with assessments of the

overall phenotype network in which these signals function

may be particularly informative.
(b) Traits affecting inter-nest distance
Our analyses identified a single principle component axis,

[Repertoire/Vent Darkness], as the best predictor of the nearest

competitor distance, our measure of intrasexual selection.

Although repertoire size has often been suggested to result

from female preference for elaborate songs [52,53], recent

work indicates weak support for this hypothesis across birds

[54,55]. Our findings are consistent with the idea that overall

repertoire size results from intrasexual competition, rather

than mate choice [55]. Given the known function of dark color-

ation in sexual signalling within this subspecies as well as

previous experimental and correlational work showing that

darker males have greater concentrations of circulating testos-

terone [26,56], it is not surprising that darker birds should

defend larger territories. However, vent chroma loaded highest

on the repertoire axis, but loaded nearly as highly on the [Ven-

tral Paleness] axis, which did not predict inter-nest distance.

Thus, whether the darkness of vent plumage (on the underside

of a male’s rump, see the electronic supplementary material,

figure S1) is important in male–male interactions is unclear,

particularly as this feather patch would often be invisible

when perched inside the nesting area.

Greater inter-nest distance was also associated with

lower pitch, higher tonality, wider frequency bandwidth,

and slower warbles and rattles. These results are consistent

with previous studies of H. r. rustica in Italy, indicating corre-

lations between pitch, rattle exaggeration and number of

competitors [31].

http://rspb.royalsocietypublishing.org/
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5. Conclusion
In summary, we argue that mapping the results of traditional

analyses of trait function onto phenotype networks provides

new insights into multicomponent signalling systems. While

data reduction techniques such as PCA are focused on creating

orthogonal (i.e. statistically independent) variables amenable

to statistical analysis, phenotype networks turn the focus on

investigating the patterns of correlations. A strength of our com-

bined approach is that it provides a robust tool for analysing

both structure and function of complex phenotype associ-

ations. Further, the identification of trait correlations and

modules among phenotype networks is highly amenable for

use in hypothesis testing about the evolutionary ecology of

complex signal traits. Specifically, identification of structurally

independent trait modules with common functions (equivalent

to clusters conveying ‘multiple messages’) allows for the

design of appropriate manipulative experiments to test for

functional signalling interactions. We suspect that further pro-

gress in network theory will lead to more sophisticated tools to

incorporate additional information, such as the strengths of

correlations between traits.

Using a phenotype network approach in our barn

swallow example allows us to see that traits that are most

important in two different contexts (mate choice and intrasexual

competition) are generally discrete trait clusters. Moreover,

we are able to begin exploring how modules of traits are

organized within and across trait types—patterns that are not

necessarily obvious based on biological intuition. We hope that

further development of such methods across taxonomic groups
will facilitate a move towardsacommonframework forassessing

the complexityof signal architecture and functionacross systems.
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