POPULATION GENETICS OF A RECENT TRANSCONTINENTAL COLONIZATION OF SOUTH AMERICA BY BREEDING BARN SWALLOWS (HIRUNDO RUSTICA)

SHAWN M. BILLERMAN,1,4 GERNOT H. HUBER,2 DAVID W. WINKLER,2 REBECCA J. SAFRAN,3 AND IRBY J. LOVETTE1

1 Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York 14853, USA; 2 Museum of Vertebrates and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA; and 3 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA

ABSTRACT.—The natural range extension and colonization of a new continent by a bird species is rare, and even more rarely is it observed and documented. In 1980, six pairs of Barn Swallows were found breeding in Argentina within the species’ historical wintering range, and this South American population has since grown to thousands of pairs. We explored the genetic context and consequences of this natural trans-hemispheric colonization event via comparisons among the South American population and two North American populations. We tested for evidence of a genetic founder event by assessing allelic diversity at eight microsatellite loci and haplotype diversity of mitochondrial ND2 sequences. Contrary to our expectations, the recently established South American breeding population showed no evidence of a founder effect, with no difference in heterozygosity, allelic diversity, haplotype diversity, or population differentiation in comparison to the large North American populations. The genetic similarity of these populations suggests that this long-distance colonization event was not associated with a strong demographic bottleneck, perhaps because the South American population has been augmented by ongoing immigration from North America. Received 3 November 2010, accepted 3 May 2011.

Key words: Barn Swallow, colonization, founder event, Hirundo rustica, microsatellite, population bottleneck.

Genética de la Población de una Colonización Reciente Transcontinental de América Del Sur Por Cria Granero Golondrinas (Hirundo rustica)

RESUMEN.—La extensión del área de distribución natural y la colonización de un nuevo continente por una especie de ave es raras y es aún más rara vez observado y documentado. En 1980, se encontraron seis pares de golondrinas granero cría en Argentina en el rango de invernada histórico de la especie, y esta población sudamericana ha crecido a miles de parejas. Exploramos el contexto genético y las consecuencias de este evento natural colonización trans-hemisférica mediante comparaciones entre la población de América del Sur y dos poblaciones de América del Norte. Probamos para pruebas de un evento fundador genética mediante la evaluación de la diversidad alélica en ocho lugares de microsatélites y haplotipo diversidad de secuencias de ND2 mitocondriales. Contrariamente a las expectativas, la recientemente establecida sudamericano población de cría no mostró evidencias de un efecto fundador, con ninguna diferencia en heterozigosidad, diversidad alélica, haplótipo diversidad o diferenciación de la población en comparación con las grandes poblaciones de América del Norte. La similitud genética de las poblaciones sugiere que este evento de colonización de larga distancia no se asoció con un cuello de botella demográfica fuerte, tal vez porque la población de América del Sur ha sido aumentada por la constante inmigración de América del Norte.

LONG-DISTANCE COLONIZATION events, although rare, can have important consequences for the distribution and diversification of populations and species (Carson and Templeton 1984, Grant et al. 2001). In most cases, new populations founded via long-distance colonization are small and may therefore be subject to substantial genetic drift. These types of founding events have a venerable intellectual place in evolutionary theory. For example, as part of his articulation of the Modern Synthesis, Mayr (1954) suggested that a founding population, when sufficiently small, may undergo a cascade of genetic changes that foster the population’s rapid differentiation. In addition to rapid differentiation, genetic drift associated with founder events could lead to a reduction in genetic variability, as well as an accumulation of inbreeding effects and increased levels of homozygosity in the colonizing population (Templeton 1980, Barton and Charlesworth 1984, Carson and Templeton 1984).

4Present address: Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA. E-mail: sbillerm@uwyo.edu

The Auk, Vol. 128, Number 3, pages 1–8. ISSN 0004-8038, electronic ISSN 1938-4254. © 2011 by The American Ornithologists’ Union. All rights reserved. Please direct all requests for permission to photocopy or reproduce article content through the University of California Press’s Rights and Permissions website, http://www.ucpressjournals.com/reprintInfo.asp. DOI: 10.1525/auk.2011.10252

— 1 —
Because patterns of genetic variation can change rapidly during and just after a founder event (Templeton 1980), understanding how colonization events affect patterns of genetic variation requires studies of ongoing or recent colonization events. Perhaps because the earliest stages of population colonization have only rarely been fully documented and sampled, there are surprisingly few studies of how natural colonizations affect genetic variation in animals (e.g., Tarr et al. 1998, Rasner et al. 2004, Hawley et al. 2006, Pruett et al. 2005, Baker et al. 2008). One of the most comprehensive examples involves birds of the Silvereye species complex (Zosterops lateralis) that have colonized multiple islands off Australia and New Zealand (Clegg et al. 2002, Estoup and Clegg 2003). In that Silvereye system, genetic bottlenecks at microsatellite loci are most evident after the sequential stepping-stone colonization of multiple islands. By contrast, single-step founder events have a much smaller effect on allelic diversity. This pattern has suggested that colonization events that result from single founder events may have little effect on the diversity and divergence of neutral genetic markers (Clegg et al. 2002). The same effects of sequential colonizations have also been observed in reintroduced populations of the endangered New Zealand Saddleback (Philesturnus carunculatus rufusater), where populations have been successively introduced to new islands (Lambert et al. 2005).

In another example of the effects of sequential founder effects, Abdelkrim et al. (2005) studied Ship Rats (Rattus rattus) on the Guadeloupe Islands of the West Indies. Historical eradication attempts had caused a well-documented population bottleneck, which was detectable using microsatellite markers. Two distinct bottlenecks were discernible in this Ship Rat population: an older population bottleneck, which could be attributed to the original colonization event in the 1700s, and a more recent bottleneck attributed to the eradication attempts that occurred around 2001.

Larger single-event founder effects have been documented in other avian systems. For example, a small number of captive House Finches (Carpodacus mexicanus) were introduced to the eastern United States in the 1940s, and the population subsequently expanded rapidly. These birds became abundant throughout much of eastern North America by 1990 (Hawley et al. 2006). Despite its large census population size, the introduced House Finch population now has substantially lower diversity than the native population at both microsatellite and mitochondrial DNA (mtDNA) loci, probably as a result of the small and highly male-biased founding population (Hawley et al. 2006, 2008). Other studies of founder events and population bottlenecks in avian populations have addressed reintroduced populations of endangered species (Tarr et al. 1998, Lambert et al. 2005). The Laysan Finch (Telespiza cantans) has been introduced to several small islands as part of a recovery effort, and Tarr et al. (1998) found that those populations with the smallest number of founders and the slowest post-introduction population growth had significantly reduced allelic diversity and heterozygosity when compared with the source population.

In general, the effect of a founder event on levels of allelic diversity will depend on the size and composition of the founding population and the duration of the associated demographic bottleneck (Nei et al. 1975, Hoelzel 1999, Eales et al. 2008). In addition, the genetic signature of a founder event may change after the initial event because of subsequent gene flow between the original and the new population. For example, a population of Purple Martins (Progne subis) in British Columbia has retained high genetic diversity despite severe population declines, likely (at least in part) because of the immigration of individuals from larger populations (Baker et al. 2008). Similarly, a recent study of a Caribbean Anolis lizard illustrated how limited genetic structuring due to high gene flow increases the likelihood that even a small founding population will retain a relatively high degree of genetic diversity (Eales et al. 2008).

Here, we explore patterns of genetic variation in North and South American breeding populations of Barn Swallows (Hirundo rustica erythrogaster). Most Barn Swallows that breed in North America migrate to South America during the northern winter–austral summer, but this species did not historically breed south of northern Mexico (Brown and Brown 1999). In 1980, however, six pairs were discovered breeding in Argentina (Martínez 1983) (Fig. 1). We are confident that the Barn Swallow population had not been established in this area much earlier than 1980, given the highly visible nature of Barn Swallow colonies, the fact that they primarily build nests on human-constructed structures, and the active ornithological community in the area that it colonized. This austral breeding population has grown dramatically, and our observations put the current population size in the thousands of breeding pairs. In addition, the breeding sites in Argentina are separated from any currently known wintering population of Barn Swallows from North America. Phenotypic and genetic evidence indicate that the South American breeding population was derived from the North American population rather than from populations in Eurasia, providing us with the opportunity to compare the newly founded South American population with its source, and thereby explore the early genetic consequences of a natural long-distance colonization event by a migratory bird in concert with its associated behavioral and ecological shifts.

We used both microsatellite and mitochondrial DNA (mtDNA) markers to compare patterns of genetic diversity between North and South American breeding Barn Swallow populations. With an observed founding population of only a few pairs in the earliest documented breeding seasons (Martínez 1983), we expected to find evidence for a genetic founder event in the South American population, as evidenced by substantially reduced allelic diversity and reduced heterozygosities (Nei et al. 1975) at microsatellite loci, and similarly reduced haplotype diversities in mtDNA. However, the South American breeding population appears to have increased very rapidly after its founding, and there could also be ongoing gene flow in the form of recruitment of North American birds into the breeding South American population, both of which would act to reduce the genetic signature of a population bottleneck.

Methods

Sampling

We obtained genetic samples from the newly founded South American population in Buenos Aires Province, Argentina (Fig. 1), and from populations in central California and New York state. We chose these North American sampling sites because they span
the North American breeding range of this species and because the New York population has been previously monitored and investigated (Safran and McGraw 2004, Safran et al. 2005). Blood was collected from the brachial vein and immediately stored in Queens lysis buffer (Seutin et al. 1991) prior to processing for DNA extraction. All samples were collected during the breeding season, May–July in North America and November–January in Argentina. Although some samples were collected from nestlings, care was taken not to include siblings, or parents and offspring, in the analyses.

DNA Extraction and Amplification

Genomic DNA was extracted from blood samples using Perfect gDNA Blood Mini kits (Eppendorf) and stored at −80°C until needed. To survey allelic diversity, we genotyped each individual at eight polymorphic microsatellite loci (Table 1), five originally isolated from Barn Swallows (Tsyusko et al. 2007) and three isolated from other species (Hanotte et al. 1994, McDonald and Potts 1994, Bensch et al. 1997, Kleven et al. 2005). All eight loci were amplified via polymerase chain reaction (PCR) using a cycling protocol that included an initial denaturation step at 95°C for 5 min, followed by 34 cycles of 30 s at 95°C, a locus-specific annealing temperature (Table 1), and 30 s at 72°C, followed by a final extension step of 72°C for 4.5 min. Each 10-μL reaction contained 10–100 ng of genomic DNA, 10 mM Tris-HCl (ph 8), 50 mM KCl, 0.12 uM forward and reverse primers, one of which was fluorescently labeled at the 5’ end with PET, 6-FAM, VIC, or NED (Applied Biosystems, Foster City, California), 3.25 mM MgCl2, 0.2 mM of each nucleotide (Invitrogen), and 0.025 U of Taq Jumpstart DNA polymerase (Sigma-Aldrich, St. Louis, Missouri). Labeled PCR products were electrophoresed on an ABI 3100 Genetic Analyzer (Applied Biosystems), and allele sizes were estimated using GENEMAPPER, version 3.0 (Applied Biosystems).

Table 1. Primer sequences for eight polymorphic microsatellite markers in Barn Swallows, with their respective annealing temperatures (Tₘ), observed heterozygosity (Hₒ), expected heterozygosity (Hₑ), total number of alleles (K), and the allelic richness found among all populations.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primer sequence (5’→3’)</th>
<th>Tₘ</th>
<th>Hₒ</th>
<th>Hₑ</th>
<th>K</th>
<th>Allelic richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escµ6¹</td>
<td>F: CATA-GTAGCCCTGCTAGG R: GCAAGTGCTCTTAAATT TG</td>
<td>50</td>
<td>0.887</td>
<td>0.913</td>
<td>0.811</td>
<td>0.877</td>
</tr>
<tr>
<td>Ltr6²</td>
<td>F: GCCATGCACAGGAGTGAGTC R: AGTCATCTCCATCAAGG</td>
<td>50</td>
<td>0.528</td>
<td>0.565</td>
<td>0.676</td>
<td>0.589</td>
</tr>
<tr>
<td>POCG6³</td>
<td>F: TCACCCCTAAAAACACACACA R: ACCTCTCTCGAAAGGGGAGC</td>
<td>50</td>
<td>0.808</td>
<td>0.696</td>
<td>0.851</td>
<td>0.862</td>
</tr>
<tr>
<td>Hir 6⁴</td>
<td>F: GACGGCTCTGGGGGTAGA R: AAGGCAATGACCCACAG</td>
<td>50</td>
<td>0.84</td>
<td>0.87</td>
<td>0.781</td>
<td>0.833</td>
</tr>
<tr>
<td>Hir 11⁴</td>
<td>F: AAGACCTGAAAACCTACAC R: CTTTGACGAAATGAGT</td>
<td>58</td>
<td>0.673</td>
<td>0.826</td>
<td>0.581</td>
<td>0.822</td>
</tr>
<tr>
<td>Hir 17⁴</td>
<td>F: ATGCATGCTGCAGAT R: CTGTCATGCTACATCA</td>
<td>58</td>
<td>0.510</td>
<td>0.913</td>
<td>0.722</td>
<td>0.879</td>
</tr>
<tr>
<td>Hir 19⁴</td>
<td>F: GCTCACAACACAGCAGTAGAC R: ATAGCCACAGGAAATCT</td>
<td>58</td>
<td>0.679</td>
<td>0.609</td>
<td>0.824</td>
<td>0.839</td>
</tr>
<tr>
<td>Hir 20⁴</td>
<td>F: GAAGTCTCGAGAAAGATTAG R: TTAATGCTCTGCGTATG</td>
<td>58</td>
<td>0.865</td>
<td>0.652</td>
<td>0.824</td>
<td>0.836</td>
</tr>
</tbody>
</table>

To assess mitochondrial haplotype variation, we sequenced the NADH dehydrogenase subunit II gene (ND2; 1,023 base pairs). Each 10-μL PCR reaction contained 10–50 ng of genomic DNA, 10 mM Tris-HCl (pH 8.0), 50 mM KCl, 2.5 mM MgCl₂, 0.25 mM of each nucleotide, 0.25 mM of forward and reverse primers METB and TRPC (Eberhard and Bermingham 2004), and 0.025 U of Taq jump-start polymerase (Sigma-Aldrich). We followed lab protocols for sequencing reactions using BigDye Terminator Ready Reaction Cycle Sequencing (Applied Biosystems) as in Lovette and Rubenstein (2007) and obtained sequences using the Cornell University Life Sciences Core Laboratories Center facility. We used SEQUENCER, version 4.5, to trim and align sequences. We also checked ND2 sequences for premature stop codons and other indications of nuclear pseudogene copies of this mitochondrial gene. Sequences were deposited in GenBank (accession nos. HQ333550–HQ333663).

Data Analysis

Measuring population genetic structure.—A combination of markers and analyses was applied to assess differences in population genetic structure among the three sampled populations of Barn Swallows. First, we used GENEPop, version 1.2 (Raymond and Rousset 1995), to estimate population differentiation at the microsatellite loci, and to test for Hardy-Weinberg Equilibrium within and among populations. We used FSTAT, version 2.9.3.2 (Goudet 1995), to estimate pairwise population differentiation, population pairwise FST values, allelic richness, and the number of alleles found in each population per locus. We used GENETIX (Belkhir et al. 2004) to calculate the P values for the population pairwise FST values. We used GENALEX, version 6 (Peakall and Smouse 2001), to determine the number of private alleles in each of the three sampled populations. We used DNASP, version 5 (Librado and Rozas 2009), to determine basic nucleotide diversity and divergence within our mitochondrial sequence data as well as two measures of selection, Tajima’s D and Fu’s Fs.

To test for population structure between North and South American Barn Swallows, we used STRUCTURE, version 2.1 (Pritchard et al. 2000), employing a burn-in period of 100,000 with 500,000 Markov Chain Monte Carlo replicates after burn-in. We used an admixture model, with an initial ALPHA value of 1.0. We ran 500,000 Markov Chain Monte Carlo replicates after burn-in. We also ran the same tests with an 80% proportion of one-step mutations, and an average size of non-one-step mutations of 3.5 bases. We assumed that allele frequencies are correlated among populations, given the distribution of allele sizes. The results were deposited in GenBank (accession nos. HQ333550–HQ333663).

Results

Measuring population genetic structure.—In total, we sampled 73 Barn Swallows from the Argentine population, 23 from California, and 53 from New York. Of these, all individuals were genotyped, and a total of 114 individuals (77% of those genotyped) were sequenced at the mitochondrial ND2 gene.

All eight microsatellite loci were polymorphic, with between 7 and 18 alleles per locus. Heterozygosity varied among loci but did not differ among populations (Table 1). Allelic richness also did not vary among populations (Fig. 2). Five of eight loci were in Hardy-Weinberg equilibrium (HWE) in all populations when corrected for multiple comparisons using a sequential Bonferroni procedure (Rice 1989). Deviations from HWE involved locus Hir11 in one subpopulation in Argentina, Hir19 in California, and Hir17 and Hir19 in New York. No single locus was consistently out of HWE, which indicates that these deviations are unlikely to have resulted from the presence of null alleles.

All three populations had private alleles. The Argentine population had the highest number, with 21 private alleles. The
July 2011—Barn Swallow Colonization in Argentina—

California population had 10, and the New York population of breeding Barn Swallows had 14 private alleles.

Between-population analyses revealed significant, but very low, genetic differentiation, with F_{ST} values for the microsatellite data ranging between 0.011 and 0.018 (Table 2). Tajima’s D and Fu’s Fs values for the mitochondrial sequence data were not significant (Table 2). Individuals within populations did not generally cluster together when assigned to populations using STRUCTURE, again showing very little population differentiation. Analyses using STRUCTURE identified that the model in which $K = 1$ was best supported, with a probability of 0.99, and were hence unable to detect any population structure among the three sampled groups. Models in which K was equal to 2 through 5 received support values of 0.01 or lower.

Testing for a founder event.—Within-population analyses using the program BOTTLENECK showed no evidence for a founder effect in any of the three populations, including the recently founded Argentine population, under either the stepwise mutation model (SMM) or the two-phase model (Table 3). However, under the independent alleles model (IAM), all three populations showed a significant heterozygote excess (Table 3). M ratio patterns were similar to those of the SMM and TPM results of BOTTLENECK, in that the Argentine breeding population (M ratio = 0.84) had a value intermediate between those of New York (0.90) and California (0.83). All of the M ratio values were significant at $P = 0.05$ when the effective population size (N_e) was assumed to be 10,000 and when the proportion of single-step mutations was 80%. In addition, M ratio values fell within expected values for stable populations (Garza and Williamson 2001) (Table 4).

We reconstructed the haplotype network of the complete ND2 gene using TCS. In total, we found 24 distinct haplotypes across all 3 sampled populations, with 4 haplotypes representing the majority of 106 individuals sampled. Five haplotypes were

Table 2. F_{ST} results among the three sampled populations for microsatellite data. Fu’s Fs and Tajima’s D are given for mitochondrial sequence data (asterisks indicate significance at $P = 0.05$).

<table>
<thead>
<tr>
<th></th>
<th>Argentina</th>
<th>California</th>
<th>Ithaca</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{ST}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tajima’s D</td>
<td></td>
<td>0.018*</td>
<td>0.011*</td>
</tr>
<tr>
<td>Fu’s Fs</td>
<td></td>
<td>-0.23</td>
<td>-0.69</td>
</tr>
</tbody>
</table>

Table 3. The M ratios and BOTTLENECK results of the three sampled populations of Barn Swallows when run with different parameters (see text), showing the one-tailed probability for a heterozygosity excess for each (asterisks indicate significance at $P = 0.05$) for the independent alleles model (IAM), the stepwise mutation model (SMM), and the two-phase model (TPM), using the parameters of 0% proportion SMM and 0.36 variance for the TPM. Values significant at $P = 0.05$ are reported, and “NS” denotes values that were not significant.

<table>
<thead>
<tr>
<th></th>
<th>Argentina</th>
<th>California</th>
<th>New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% single-step mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta = 10$</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>$\theta = 20$</td>
<td>NS</td>
<td>0.825</td>
<td>0.895</td>
</tr>
<tr>
<td>80% single-step mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\theta = 10$</td>
<td>NS</td>
<td>0.825</td>
<td>0.895</td>
</tr>
<tr>
<td>$\theta = 20$</td>
<td>0.840</td>
<td>0.825</td>
<td>0.895</td>
</tr>
<tr>
<td>IAM</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>SMM</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>TPM</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
unique to Argentina, six haplotypes were unique to New York, and six haplotypes were unique to California (Fig. 3). These unique haplotypes represent a small proportion of those within each population, considering that 26 individuals shared a haplotype with individuals from another population.

On the basis of haplotype mismatch distributions, we were unable to reject the null hypothesis of population growth in any of the three populations of Barn Swallows. Neither the sum of the squared deviations nor the Harpending’s raggedness index had significant value at \(P = 0.05 \) (Table 4).

Table 4. Results from ARLEQUIN, version 3.11 (Excoffier 2005), for mismatch distribution of the three populations of Barn Swallows sampled, and from DNASP (Librado and Rozas 2009) for haplotype diversity \((H_d) \) and nucleotide diversity \((\pi) \). Given here are the sum of the squared deviations and the Harpending’s raggedness index; no values were significant at \(P = 0.05 \).

<table>
<thead>
<tr>
<th>Population</th>
<th>Sum of the squared deviations</th>
<th>(H_d)</th>
<th>(\pi)</th>
<th>Harpending’s raggedness index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.07554381</td>
<td>0.73169</td>
<td>0.00373</td>
<td>0.10691839</td>
</tr>
<tr>
<td>California</td>
<td>0.00477155</td>
<td>0.85965</td>
<td>0.00321</td>
<td>0.01824458</td>
</tr>
<tr>
<td>New York</td>
<td>0.03048844</td>
<td>0.81653</td>
<td>0.00341</td>
<td>0.05458995</td>
</tr>
</tbody>
</table>

Discussion

Our study of the South American breeding population of Barn Swallows represents the first genetic investigation of this founding population in Argentina since its formal description in 1983 (Martínez 1983). Populations like this represent unique opportunities to study the genetic effects of natural colonization events. Contrary to our *a priori* expectations, our analyses of microsatellite and mtDNA data revealed no evidence for a founder effect or population bottleneck in the South American breeding population. There are several potential, non-exclusive reasons for this absence of a genetic signature of a bottleneck in this population.

Theory predicts that genetic drift may be minimal when a recently colonized population grows rapidly (Nei et al. 1975, Hoelzel 1999). For example, Eales et al. (2008) suggested that rapid population growth in a recently founded population of a Caribbean *Anolis* was one of several factors that caused that population to maintain high levels of genetic diversity. This could similarly be true for the austral-breeding population of Barn Swallows, which went from six breeding pairs observed in 1980 (Martínez 1983) to the thousands of pairs found today.

Alternatively, any early genetic signatures of a bottleneck in South America could have been erased by ongoing gene flow from the North American population. This scenario is supported by our observations in November 2008 and 2010 (G. H. Huber and D. W. Winkler unpubl. data) of several hatch-year birds in full body molt at the breeding colonies in Argentina. Because the Argentine Barn Swallows had not yet fledged any young at that time, and because Barn Swallows typically molt on the nonbreeding grounds, these molting young birds were almost certainly hatched in North America earlier that year. Given that most North American birds appear to winter at least 1,000 km north of the Argentine breeding population (G. H. Huber pers. obs.), these birds likely represent migrants that overshot their destination and settled into the breeding colonies. Because Barn Swallows are colonial breeders, the presence of many breeding birds may stimulate these migrant overshoots to come into breeding condition sooner or to adopt an austral breeding cycle and, hence, contribute to intercontinental gene flow. This pattern may also explain the presence of Cliff Swallow (*Petrochelidon pyrrhonota*) nests at several Barn Swallow colonies in Argentina (Petracci and Delhey 2004). Like the Barn Swallow, the Cliff Swallow is a colonial species that breeds in North America and migrates as far south as Chile and Argentina but is not otherwise known to breed in the southern hemisphere.

To further investigate the potential for ongoing gene flow from North America to Argentina, we also analyzed our mtDNA data using Isolation with Migration (Ima). However, we were unable to let the program run long enough so that independent runs using different random starting seeds converged. Despite the fact that these values did not converge, they were consistent in showing that there was much higher migration from the two North American populations to the Argentine population than from Argentina to either North American population. This is highly suggestive that there is gene flow (ongoing or recent historical) from North American Barn Swallows to South American Barn Swallows.

Microsatellite markers have long been one of the primary tools for research on the genetic structure of wild populations of organisms, specifically for looking at recent demographic changes in populations (e.g., Tarr et al. 1998, Spencer et al. 2000, Clegg et al. 2002, Abdelkarim et al. 2005, Lambert et al. 2005, Hawley et al. 2006, Eales et al. 2008). However, other markers, including mtDNA sequences, can be useful for looking at population genetic patterns (Baker et al. 2008, Hawley et al. 2008). Sequences from mtDNA may be particularly powerful for detecting recent population bottlenecks because of its four-fold smaller effective population size in relation to autosomal nuclear markers. For example, Hawley et al. (2008) found that the demographic bottleneck they observed with mtDNA sequence data was nearly twice that observed in the microsatellite data for the same House Finch populations. By contrast, in the Argentine breeding population of Barn Swallows, both microsatellite and mtDNA sequence data showed a similar lack of evidence for any reduction in genetic diversity that might have been related to a founder event. Comparisons of divergence using microsatellite data and mitochondrial sequence data were different because values for the mtDNA were not significant. However, this discordance between marker classes could be due to differences in dispersal rates between males and females. Because mtDNA is maternally inherited, the expected higher dispersal rates in females (Clarke et al. 1997, Winkler et al. 2005) would lead to a much weaker signal of divergence in the ND2 sequences compared to the microsatellite loci.

The mitochondrial haplotype data can provide some further insights into the minimum size of the founder Barn Swallow population. If the founder population was indeed the six pairs observed in 1980, then there should be no more than six mitochondrial haplotypes (and probably fewer, given the high frequency of the most common haplotypes in the North American samples). However, we found a total of 12 haplotypes in the South American breeding population, and with further sampling would likely have discovered more. Additionally, we found that the haplotypes most common in North America were also most common in Argentina,
which suggests that gene flow has kept these populations generally similar in their haplotype frequencies. Considered together, these patterns suggest that substantially more than 12 immigrant females contributed to the South American population during or after its founding.

Although the BOTTLENECK results are in conflict depending on the mutation model used, we are confident that they provide no robust evidence of a population bottleneck. A founder event was supported only in the analyses that used the IAM, but it has been shown that this model does not properly characterize the nature of microsatellite mutation (Hawley et al. 2006) and that it will identify bottlenecks in populations that have not experienced them (Luikart and Cornuet 1998, Eales et al. 2008).

An alternative explanation for the absence of any population bottleneck could be poor detectability of the Argentina Barn Swallows. It is possible, though unlikely, that Barn Swallows were breeding in Argentina well before 1980 and that they had a much larger founding population that went unobserved. This scenario is unlikely for this highly visible and human-associated species, which nests beneath major roadways in the most densely settled and intensely observed regions of Argentina, where there has been a very active community of field ornithologists for more than five decades.

Information on private alleles also provides evidence against a population bottleneck. Given that rare alleles are lost during a founder event, the presence of a high number of private alleles in the Argentina population compared with both North American populations argues against strong genetic drift in the south.

In summary, there are several potential explanations for the lack of any observable genetic bottleneck in the South American Barn Swallow population. It seems likely that this population has received, and may continue to receive, substantial gene flow from birds of North American origin. This past and potentially continuing gene flow may have had the strongest effect on the population genetics of the Argentina Barn Swallows, but other factors, such as rapid population growth, may have also been important in this population. Thus, we conclude that these immigrants have repeatedly shifted their breeding and molt cycles by 6 months to adopt an austral breeding pattern. The behavioral and ecological plasticity exhibited by these Barn Swallows echoes their flexibility in migratory behavior (Winkler 2006), and it is intriguing in the context of other systems (Sutherland 1998) in which long-distance colonization events have required substantial shifts in the timing of reproduction or other behavioral changes in response to the different environmental conditions at the new breeding site.

Acknowledgments

We thank L. Stenzler, C. Makarewich, A. Talaba, M. Carling, and A. Coulon for assistance and advice on lab work and data analysis. P. Petracchi was very gracious in introducing us to the Barn Swallows of Buenos Aires province. This work was supported in part by the Hughes Scholars Program, the Dextra Undergraduate Research Fund, Cornell University and the Cornell Lab of Ornithology, and National Science Foundation awards NSF-DEB-0515981, DEB-0814277, and IBN-0131437.

Literature Cited

Associate Editor: L. Joseph